Paste #5OR -- näytä pelkkänä tekstinä -- uusi tämän pohjalta
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | function inventorycube(img_top, img_left, img_right, img_dst) calculate world to projection matrix A draw_3d_quad(img_right, img_dst, color_right, A, (+0.5,+0.5,-0.5), (+0.5,-0.5,-0.5), (+0.5,-0.5,+0.5), (+0.5,+0.5,+0.5)) draw_3d_quad(img_top, img_dst, color_top, A, (-0.5,+0.5,+0.5), (-0.5,+0.5,-0.5), (+0.5,+0.5,-0.5), (+0.5,+0.5,+0.5)) draw_3d_quad(img_left, img_dst, color_left, A, (-0.5,+0.5,-0.5), (-0.5,-0.5,-0.5), (+0.5,-0.5,-0.5), (+0.5,+0.5,-0.5)) end function draw_3d_quad(img_src, img_dst, color, TP, w00, w01, w11, w10) -- map world to projection space p00 = first 2 coordinates of (w00*A) p01 = first 2 coordinates of (w01*A) p11 = first 2 coordinates of (w11*A) p10 = first 2 coordinates of (w10*A) -- generate texture matrix T = 3x3 rotation/scale/translation matrix that maps p00 to (0, 0), p01 to (0, img_src:height()-1), p11 to (img_dst:width()-1, img_src:height()-1)) -- generate and draw polygon -- note: clipping can be skipped if we know the quad lies entirely within img_dst pol = make_convex_polygon([p00, p01, p11, p10]) draw_convex_polygon(img_src, img_dst, color, pol, T) end --[[ all indices are 0 based, index -1 denotes the last entry of a vector/list convex polygon data structure: - v2f[] vl; - v2f[] vr; properties: - vl[0], vr[0] are topmost vertices of the polygon (smallest y coordinate); vl[-1], vr[-1] are bottommost vertices (biggest y coordinate); the following (in)equalities hold: vl[0].y == vr[0].y vl[0].x <= vr[0].x vl[-1].y == vr[-1].y vl[-1].x <= vr[-1].x - vl describes the left boundary of the polygon (counterclockwise); vertices in vl bound the polygon from the left - vr describes the right boundary of the polygon (clockwise); vertices in vr bound the polygon from the right - there are no horizontal line segments descibed by consecutive vertices in vl or vr; the polygon has a horizontal top boundary if and only if vl[0].x < vr[0].x; the polygon has a horizontal bottom boundary if and only if vl[-1].x < vr[-1].x ]]-- function make_convex_polygon(l) -- takes a list l containing the vertices of a convex polygon -- l must contain the vertices in order, but does not need to start at the topmost vertex i = index of element of l such that its y coordinate is minimal topmost = l[i] rest = l[i+1 .. -1] + l[0 .. i-1] -- in case vertices were not given in CCW order, reverse rest if angle(rest[0], topmost, rest[-1]) < 0 then rest = rest:reverse() end j = first index of element of rest such that rest[k+1].y < rest[k].y pol = { vl = [topmost] + rest[0 .. j], vr = [topmost] + rest[j .. -1]:reverse()] } -- remove horizontal line segments from the top of the polygon while #pol.vl >= 2 and pol.vl[0].y == pol.vl[1].y do pol.vl = pol.vl[1 .. -1] end while #pol.vr >= 2 and pol.vr[0].y == pol.vr[1].y do pol.vr = pol.vr[1 .. -1] end -- remove horizontal line segments from the bottom of the polygon while #pol.vl >= 2 and pol.vl[-2].y == pol.vl[-1].y do pol.vl = pol.vl[0 .. -2] end while #pol.vr >= 2 and pol.vr[-2].y == pol.vr[-1].y do pol.vr = pol.vr[0 .. -2] end return pol end function draw_convex_polygon(img_src, img_dst, color, pol, T) -- draw convex polygon pol onto img_dst using source pixels from img_src -- multiplied by constant color (used to simulate lighting) -- T maps coordinates in img_dst to coordinates in img_src clip_xmin = 0 clip_xmax = img_dst:width() - 1 clip_ymin = 0 clip_ymax = img_dst:height() - 1 miny = floor(pol.vl[0].y) maxy = ceil(pol.vl[-1].y) pl = pol.vl[0] pr = pol.vr[0] jl = 1 jr = 1 while jl < #pol.vl and jr < #pol.vl do -- find the next trapezoid if pol.vl[jl].y <= pol.vl[jr].y then pl2 = pol.vl[jl] jl2 = jl + 1 pr2 = intersection of line segment pol.vr[jr-1]..pol.vr[jr] with line y = pl2.y jr2 = jr else pr2 = pol.vr[jr] jr2 = jr + 1 pl2 = intersection of line segment pol.vl[jl-1]..pol.vl[jl] with line y = pr2.y jl2 = jl end -- note that pl.y == pr.y and pl2.y == pr2.y -- draw trapezoid bounded by the corners pl, pl2, pr2, pr ymin = max(floor(pl.y), clip_ymin) ymax = min(ceil(pl2.y), clip_ymax) for y = ymin to ymax do xmin = max(pl.x + (pl2.x - pl.x) * (y - pl.y) / (pl2.y - pl.y), clip_xmin) xmax = min(pr.x + (pr2.x - pr.x) * (y - pr.y) / (pr2.y - pr.y), clip_xmax) for x = xmin to xmax do img_dst[x, y] = img_src[[x, y]*T] * color end end -- update clipping rect to avoid drawing to a scanline twice clip_ymin = ymax + 1 -- update loop variables pl = pl2 pr = pr2 jl = jl2 jr = jr2 end end |